

5th PIANC YP-Com (BTV) Friday, May 8 – Ghent – Port of Ghent Visitors' centre 11:30 – 12:00 Ir. Bart Moens

State-of-the-art Cable Installation Projects

Presentation Overview

- Introduction
- Case study: Race Bank Project
- State-of-the-art project references

1. INTRODUCTION

2014 turnover Euro 2.1 billion

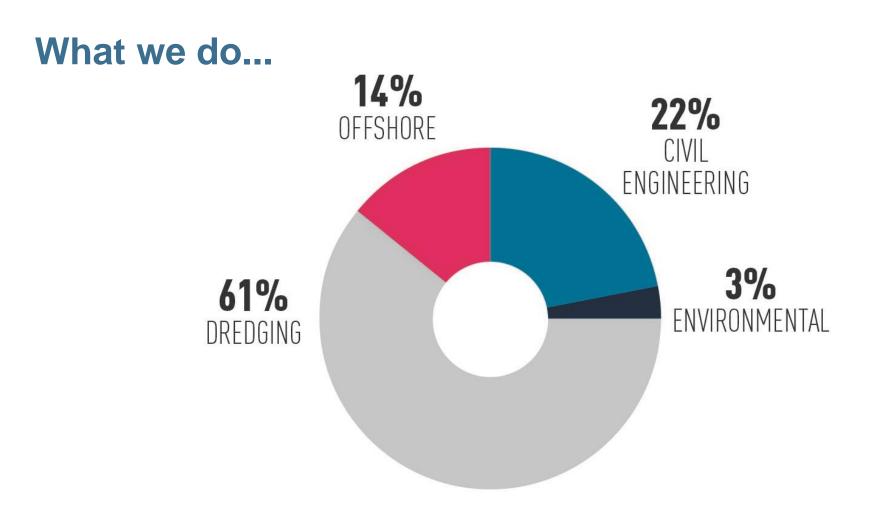
Company Overview

International maritime contractor operating over 75 vessels

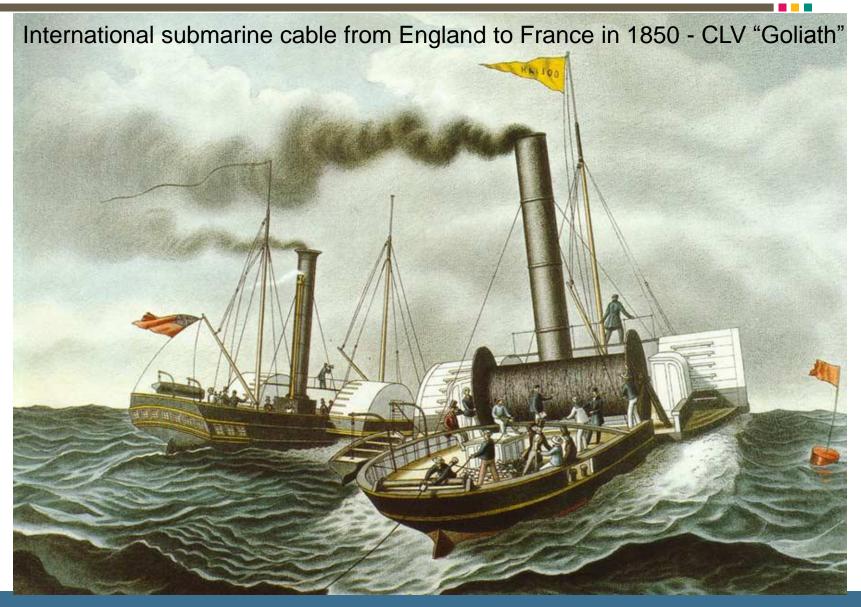
Founded as Civil Engineering Contractor in 1938

5,725 employees

100% owned and managed by the De Nul family

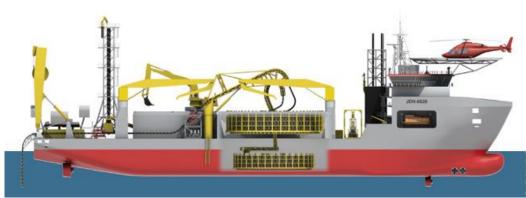

Belgium based with offices worldwide

Principal business: carry out projects with vessels owned and operated by company



fleet 75 vessels

State-of-the-art Cable installation vessels


Cable Laying Services

- 'Willem de Vlamingh'
 - 2011: Built as Rock Installation Vessel (FPV, SSDV)
 - 2013: Reconfigurated to Cable Laying Vessel (CLV)

'Isaac Newton'

- March 2015: Launched at Uljanik Shipyard (Pula, Croatia)
- August 2015: Delivery

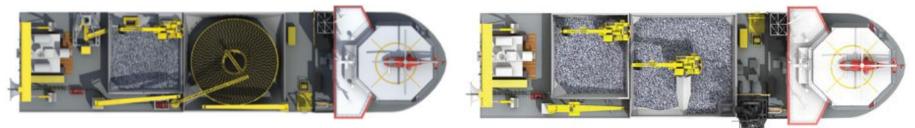
Cable Installation Vessel – 'Willem de Vlamingh'

Multi-purpose DP2 vessel

- Cable lay (5,400mT)
- Rock placing (6,000mT; FPV/SSDV)

- Trencher support
- Combination

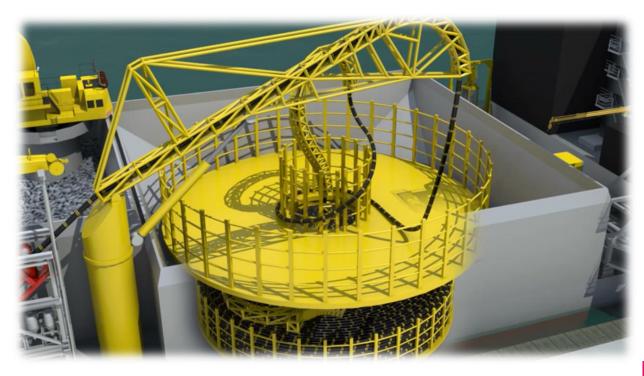
Potential layouts:



Cable Installation Vessel – 'Isaac Newton'

Multi-purpose DP2 vessel: •Cable lay (7,400mT + 4,500mT) •Rock placing (7,000mT + 3,000mT) •Trencher support •Combination

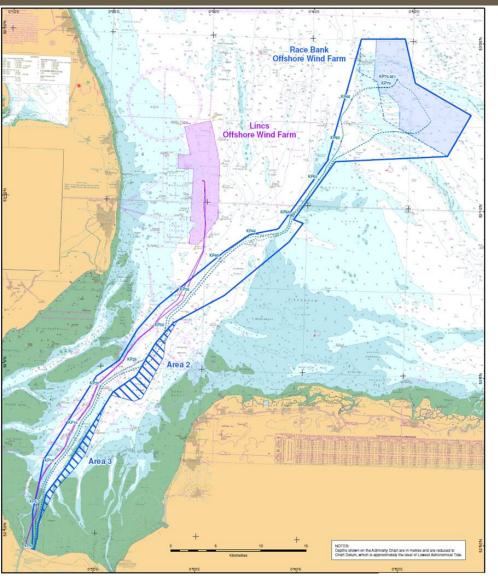
Potential layouts:



Cable Installation Vessel – 'Isaac Newton'

Deadweight	10,500 t	Propulsion	2 x 3,000 kW
Length	138.0 m	Bow thruster	2 x 1,500 kW
Breadth	32.0 m	Total power	12,000 kW
Draught loaded	7.0 m	Speed	12.0 knots
Dynamic Positioning	DP2	Accommodation	75

Unique patented cable loading design which allows to load, transport and install a maximum of 10,500 tonnes of cable in one single length divided over two turntables


1. CASE STUDY

UK – Race Bank (ROW) Project

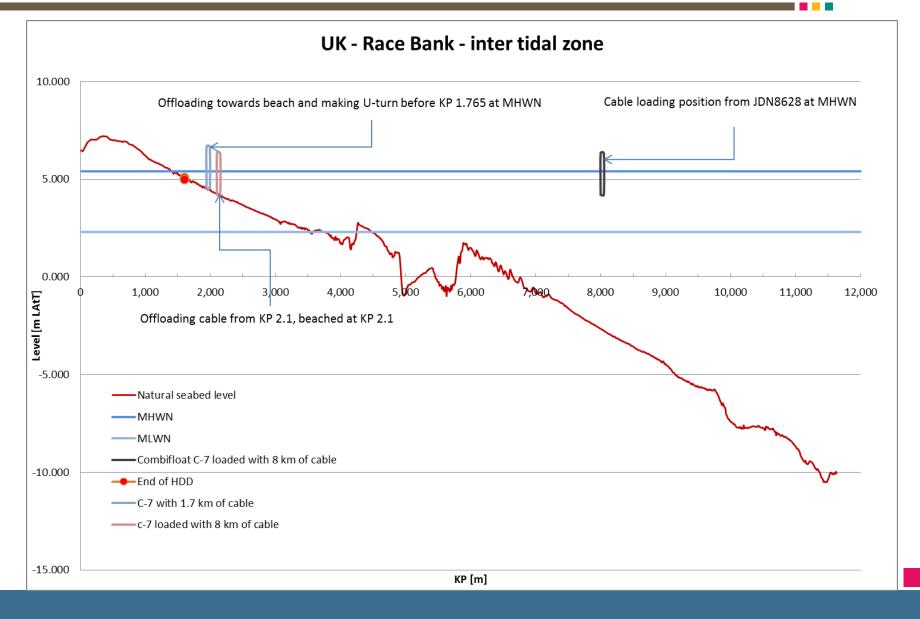
ROW01 project includes installation of approx. 2 x 71km 220kV submarine cable systems with integrated fibre optic cable between the offshore substation and the transition joint onshore and installation of a 6km long link cable.

2016

Circuit 1 and 2 – intertidal (2 x 8 km) Circuit 1 - Offshore Section (63km)

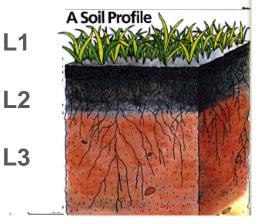
2017

Circuit 2 – Offshore (63 km) Circuit 3 - Offshore interlink cable (6 km)



Cable loading, transport and installation

	Activity	Vessel		
1	2 x 8 km (2016)	Willem De Vlamingh		
2	1 x 63 km (2016)	Isaac Newton		
3	1 x 63 km (2017)	Isaac Newton		
4	LINK (6 km) (2017)	Isaac Newton		



L1

Site visit

Marsh:

- L1: Vegetation layer
- L2: Organic layer
- L3: Saturated soil

Mud flats:

- L1: missing
- L2: missing
- L3: Saturated soil

	Marsh					Mud flats					
		ect getatio	'n	Effect roots in subsoil		s in	Saturated soil				
Depth	Table 1.4: Undrained Shear Strength (kPa) - Corrected for Vane Size and Bod Eriction							ion			
Deptil	KP0.2	KP0.4	KP0.6	KP0.2WS	KP0.8	KP1.0	KP1.2	KP1.4	KP1.6	KP1.8	KP2.0
	4	20	16	4	3	11	10	-4	8	-2	0
0.1	5	26	21	5	7	21		-2	7	-2	-1
	7	19	11	7	8	21		0	7	-2	0
			15			-1	8	-7		20	
0.5			16			-3	5	-7		9	
			16			-1	-4	5		9	
	4	-7	3	4	-5	-6	0	-4	12	-5	28
1.0	7	-7	0	7	-9	-4	-7	-16	5	6	32
	5	-8	4	5	-12	-8	9	-14	6	-5	42
			-6			-13		-11		-3	
1.5			-13			0		-14		-13	
			-8			-32		-14		-13	
	8	-14	-12	8	-10	-33	-20	-36	-23	-35	2
2.0	0	-8	-1	0	-18	-29	-14	-40	-26	-34	-28
	4	-55	-9	4	-13	-41	-20	-32	-21	-24	-28

NB: Bold and Italic = Values deemed to be incorrect and unrepresentative of the true ground conditions.

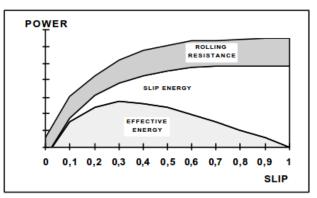
Conclusion: available measurement of the soil conditions

- Very low soil strength
- Most of the measurements are irrelevant for vegetation and organic layer
- Other tests are required as basis for detailed design.
- What do we want to know?

1. What is the maximal **TRACTION** possible without damaging the soil structure?

2. What is the maximal **BEARING CAPACITY** of the soil/vegetation?

3. What is the minimal required traction force to **DRAG** the tools (Plough / Chain cutter)?


- What is JDN-method for testing?
 - What can we measure and are the scaling laws reliable?

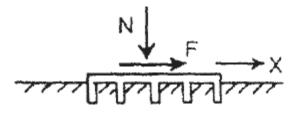
1. Traction

$$T = n.(c.b.L + \frac{W.tan(\phi)}{n}.(1-e^{-i.L})$$
Cohesion

- Cohesion: dependent on contact area
- Friction: independent on contact area
- Highest traction efficiency @ 15-25% slippage

1. Traction

Conclusion theory traction:


- Marsh
 - Vegetation => cohesion will help us to increase traction
 - Limits in vegetation: what is the maximal force which can be applied before the vegetation is damaged?
 - The larger the tracks, the better the cohesion factor
 - We want to avoid friction to increase traction as this enhances RUTTING
 - The lower the weight, the lower the risk for rutting
- Mud flats
 - Cohesion is probably none existing
 - Friction based on weight will help us to increase traction
 - Limits in weight: bearing capacity => using pulling wire from beached pontoon to pull the machine over the mud flats, only using the tracks for bearing the weight of the machine
 - The larger the tracks, the better the bearing capacity

Artic track design helps to maximise the available contact surface, while ridgid tracks cause load peaks damaging the soil.

1. Traction

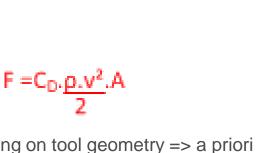
- Validation Traction :
 - Field test to determine $c \& \varphi$: Grouser plate test

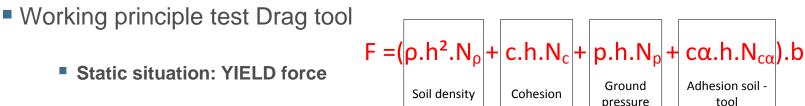
Prototype: JDN swamp excavator

2. Bearing capacity

TECHNICAL

Working principle test Bearing capacity


• Marsh: minimum ground pressure in order not to damage the vegetation layer



Mud flat: first indication gives a good bearing capacity

3. Drag tool

- N: dimensionless factors depending on tool geometry => a priori unknown
- Most dominant factor in this equation is soil density
- Yield force ~ width tool b
- Yield force ~ (depth tool h)²
- **Dynamic situation: DRAG force**

• C_{D} : dimensionless drag coefficient depending on tool geometry => a priori unknown

- Drag force ~ (velocity tool v)²
- Drag force ~ projected area A = > Drag force ~ depth tool

• General remark: JDN estimates the plough generates a higher drag force than the chain cutter

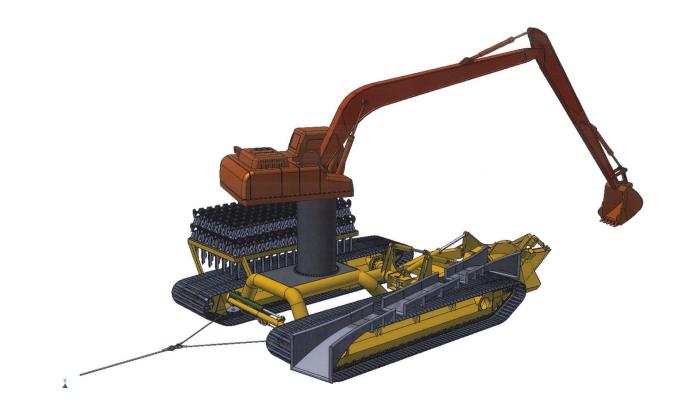
Jan De Nul

Adhesion soil -

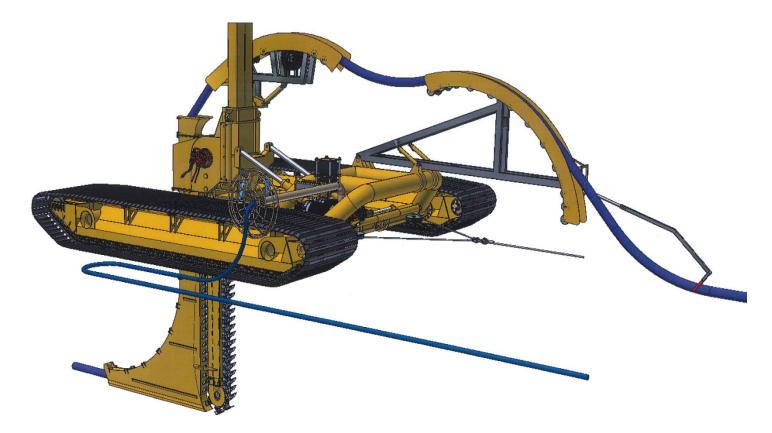
tool

3. Drag tool

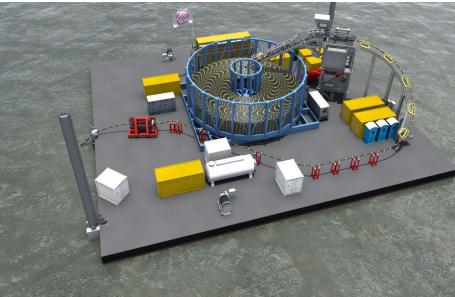
TECHNICAL


- Validation: Drag force: prototype V-shaped plough
 - Standard
 - Width legs adapted to with export cable
 - V-shaped plough with one leg, cfr. design Mastenbroek
 - Adhesion between soil and plough: anti-stick layer or greasing with water
 - Vibrating V-plough
 - Location tests?
 2 potential locations:
 Belgium & The Netherlands
 - Timing tests?
 Q4 2014

Prototype: JDN swamp excavator in combination with V-shaped plough



SALT MARSH TRENCHER


INTER TIDAL FLAT TRENCHER

Shallow pontoon for installation of intertidal cable

Cable loading, transport and installation

	Activity	Vessel		
1	2 x 8 km (2016)	Willem De Vlamingh		
2	1 x 63 km (2016)	Isaac Newton		
3	1 x 63 km (2017)	Isaac Newton		
4	LINK (6 km) (2017)	Isaac Newton		

CABLE LAYING VESSELS:

WILLEM DE VLAMINGH (2 x 8 km) DP-2, 5,400 T

ISAAC NEWTON (2 x 63 + 6 km) DP-2, beaching, 7,400 T & 4,500 T

PONTOON (2 x 8 km) 6p mooring + spuds

POST-LAY TRENCHING WITH UTV1200 and TSV VESSEL POMPEÏ

POST-LAY TRENCHING WITH UTV1200 and TSV VESSEL POMPEÏ

3. PROJECT REFERENCES

Thank you for your attention

JAN DE NUL Group

- E-mail: info@jandenul.com
- Website: www.jandenul.com